Maass-jacobi Forms over Complex Quadratic Fields
نویسندگان
چکیده
We use methods from representation theory and invariant theory to compute differential operators invariant under the action of the Jacobi group over a complex quadratic field. This allows us to introduce Maass-Jacobi forms over complex quadratic fields, which are Jacobi forms that are also eigenfunctions of an invariant differential operator. We present explicit examples via Jacobi-Eisenstein series.
منابع مشابه
Jacobi Forms over Complex Quadratic Fields via the Cubic Casimir Operators
We prove that the center of the algebra of differential operators invariant under the action of the Jacobi group over a complex quadratic field is generated by two cubic Casimir operators, which we compute explicitly. In the spirit of Borel, we consider Jacobi forms over complex quadratic fields that are also eigenfunctions of these Casimir operators, a new approach in the complex case. Theta f...
متن کاملExact Formulas for Coefficients of Jacobi Forms
In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...
متن کاملZagier-type dualities and lifting maps for harmonic Maass–Jacobi forms
The real-analytic Jacobi forms of Zwegers’ PhD thesis play an important role in the study of mock theta functions and related topics, but have not been part of a rigorous theory yet. In this paper, we introduce harmonic Maass–Jacobi forms, which include the classical Jacobi forms as well as Zwegers’ functions as examples. Maass–Jacobi–Poincaré series also provide prime examples. We compute thei...
متن کاملA Note on Maass-Jacobi Forms
In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.
متن کاملWitt rings of quadratically presentable fields
This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...
متن کامل